The Columbia University proton-induced soft x-ray microbeam.
نویسندگان
چکیده
A soft x-ray microbeam using proton-induced x-ray emission (PIXE) of characteristic titanium (K(α) 4.5 keV) as the x-ray source has been developed at the Radiological Research Accelerator Facility (RARAF) at Columbia University. The proton beam is focused to a 120 μm × 50 μm spot on the titanium target using an electrostatic quadrupole quadruplet previously used for the charged particle microbeam studies at RARAF. The proton induced x-rays from this spot project a 50 μm round x-ray generation spot into the vertical direction. The x-rays are focused to a spot size of 5 μm in diameter using a Fresnel zone plate. The x-rays have an attenuation length of (1/e length of ~145 μm) allowing more consistent dose delivery across the depth of a single cell layer and penetration into tissue samples than previous ultra soft x-ray systems. The irradiation end station is based on our previous design to allow quick comparison to charged particle experiments and for mixed irradiation experiments.
منابع مشابه
Ion, X-ray, UV and Neutron Microbeam Systems for Cell Irradiation.
The array of microbeam cell-irradiation systems, available to users at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University, is expanding. The HVE 5MV Singletron particle accelerator at the facility provides particles to two focused ion microbeam lines: the sub-micron microbeam II and the permanent magnetic microbeam (PMM). Both the elect...
متن کاملA proton induced X-ray emission (PIXE) analysis of concentration of trace elements in varicose veins
Background: Proton induced X-ray emission (PIXE) has been applied as reliable and improved techniques in this study to compare concentration of various trace elements in normal and abnormal varicose veins. Materials and Methods: Five samples from normal veins and 13 samples from varicose veins bombarded by 2.0 MeV energy proton beams produced by a Van de Graff accelerator in vacuum. T...
متن کامل50 Years of the Radiological Research Accelerator Facility (RARAF).
The Radiological Research Accelerator Facility (RARAF) is in its 50th year of operation. It was commissioned on April 1, 1967 as a collaboration between the Radiological Research Laboratory (RRL) of Columbia University, and members of the Medical Research Center of Brookhaven National Laboratory (BNL). It was initially funded as a user facility for radiobiology and radiological physics, concent...
متن کاملA mechanistic study of gold nanoparticle radiosensitisation using targeted microbeam irradiation
Gold nanoparticles (GNPs) have been demonstrated as effective radiosensitizing agents in a range of preclinical models using broad field sources of various energies. This study aimed to distinguish between these mechanisms by applying subcellular targeting using a soft X-ray microbeam in combination with GNPs. DNA damage and repair kinetics were determined following nuclear and cytoplasmic irra...
متن کاملInvestigation of heavy trace elements in neoplastic and non-neoplastic human thyroid tissue: A study by proton-induced X-ray emissions.
Background: Within the context of developing techniques to facilitate the diagnosis of the thyroid diseases, the elemental composition of pathological thyroid tissue (neoplastic and non-neoplastic) was investigated by proton induced X-ray emission. The PIXE has been widely used as a sensitive technique for trace elemental analysis in both biological and medical fields. Materials and Methods: Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms
دوره 269 18 شماره
صفحات -
تاریخ انتشار 2011